Mechanics for stretchable sensors

Nanshu Lu *, Shixuan Yang

Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, Center for Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies (NASCENT), Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA

A R T I C L E I N F O

Article history:
Received 15 October 2014
Revised 5 December 2014
Accepted 14 December 2014
Available online 14 January 2015

Keywords:
Stretchable island
Serpentine
Thin film
Polymer substrate

A B S T R A C T

In the past decade, high performance stretchable sensors have found many exciting applications including epidermal and in vivo monitors, minimally invasive surgical tools, as well as deployable structure health monitors (SHM). Although wafer based electronics are known to be rigid and planar, recent advances in manufacture and mechanics have made intrinsically stiff and brittle inorganic electronic materials stretchable and compliant. This review article summarizes the most recent mechanics studies on stretchable sensors composed of ceramic and metallic functional materials. The discussion will focus around the most popular “island plus serpentine” design where active electronic or sensing components are housed on an array of isolated, micro-scale islands which are interconnected by electrically conductive, stretchable, serpentine thin films. The mechanics of polymer supported islands, freestanding serpentes, and polymer supported serpentes will be introduced. The effects of feature geometry and polymer substrate on the stretchability, compliance, as well as functionality of the sensor system will be discussed in details. The tradeoff between mechanics and functionality gives rise to the challenge of simultaneously optimizing the structure and performance of stretchable sensors.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Research on flexible electronics started almost 20 years ago [1,2] with the demand of macroelectronics [3], such as paperlike displays [4,5]. Organic semiconductors and conducting polymers were appealing materials for large-area electronics attributing to their intrinsic flexibility, light weight, and low fabrication cost in roll-to-roll processes [6,7]. The other branch of flexible and even stretchable electronics based on high-quality inorganic semiconductors started to emerge in the mid-2000s [8,9]. Inorganic semiconductors exhibit high carrier mobility and excellent chemical stability [8]. Natural abundance and well-established manufacturing processes make them even more appealing. Their intrinsic stiffness and brittleness, however, greatly hindered their application in flexible electronics. Mechanics of stiff/brittle membranes integrated with deformable polymeric substrates have offered insights and solutions to overcome the intrinsic limitations of these materials.

For example, bendable and foldable inorganic electronics including integrated circuits [10,11], solar cells [12], light emitting diodes [13], thin film battery [14], and bio-integrated nanogenerator [15] have been successfully developed by placing fragile materials along the neutral axis of a multilayer stack. Neutral axis is defined as the line (or the plane for 3D problems) whose strain remains zero when the system is under pure bending. Using Euler–Bernoulli beam theory [16], the position of the neutral axis of an n-layer laminate can be determined by the following equation [10].

\[
b = \frac{\sum_{i=1}^{n} E_i h_i \left(\frac{1}{h_i} - \frac{1}{h} \right)}{\sum_{i=1}^{n} E_i h_i},
\]

where \(b \) denotes the distance between the top surface of the laminate to the neutral axis, \(i = 1 \) represents the top layer, \(E_i = E_i(1 - \nu_i^2) \) is the plane strain Young's modulus with \(\nu_i \) being the Poisson's ratio of the \(i \)th layer, and \(h_i \) represents the thickness. Bending-induced strain can be calculated analytically using:

\[
\varepsilon = \frac{y}{\rho},
\]

where \(\rho \) represents the radius of the neutral axis and \(y \) is the distance from the neutral axis to the point of interest. Therefore, when the median plane of a brittle layer of thickness \(h \) is aligned with the neutral axis, the maximum bending induced tensile strain in this brittle layer can be calculated by substituting \(y = h/2 \) in Eq. (2), which indicates that even when the brittle layer is placed along the neutral axis, the maximum strain is still proportional to the thickness of this brittle layer. However, we have to be careful when...
using Eqs. (1) and (2) because they are only applicable to a laminate with small elastic mismatch between different layers. With flexible photonic strain sensors [17], we find that the Euler–Bernoulli beam theory breaks down when a soft layer is sandwiched between two stiff layers because significant shear can develop in the soft layer, leading to the so called “split of neutral axis”, i.e. multiple neutral axes can appear within one multilayer laminate. This finding breaks the limit of conventional flexible electronics where all the brittle materials have to be placed along one neutral plane. Instead, it suggests a possibility to build flexible electronics with multiple layers of active components because of the presence of multiple neutral axes.

Compared with flexible electronics, the mechanics for stretchable electronics are more complicated. An earlier strategy to achieve stretchable circuits is to harness the wrinkling (i.e., no delamination between film and substrate) and buckling delamination of stiff nanoribbons or nanomembranes on soft elastomeric substrates [10,18–25]. The controlled wrinkled formation of stiff membranes on elastomeric substrates dated back to late 90s [26–28]. Wrinkled conductors were later found to be useful as stretchable interconnects [22–25]. Wrinkled semiconductor nanoribbons were first realized in 2006 [18,19]. While some analysis on the critical membrane force to initiate wrinkle [29] and buckling delamination [30–32] were even earlier than above experiments, these experiments have stimulated numerous mechanics studies to predict the wavelength and amplitude of the wrinkled patterns [33–45].

Due to difficulties associated with the fabrication, encapsulation, and bio-integration of wrinkled or buckled circuits, a new mechanics strategy to build stretchable electronics, the “island plus serpentine” design [46], became more popular. The idea is simple: instead of using continuous nanomembranes or straight nanoribbons, inorganic materials can be patterned into isolated micro-islands and serpentine-shaped meandering ribbons. As the Young’s moduli of elastomers are four to six orders lower than inorganic semiconductors, when the elastomer substrate is stretched, it cannot generate large enough stress to be transferred to the stiff islands which are bonded to the elastomer. Therefore strains in the islands remain very small and the brittle materials housed on the islands can stay intact even under very large applied strains to the substrate. To complete the circuits, isolated islands have to be interconnected by extremely stretchable conductors. While straight thin metal films well adhered to polyimide substrate have demonstrated stretchability up to 50% [47–49], the deformation is enabled by plastic mechanism, which is not reversible. One way to enable reversible resistance of straight thin metal film with applied loading and unloading is through a microcrack facilitated mechanism [50], but their fatigue behavior could be a concern. Wrinkled stretchable interconnects have been studied extensively [23–25] but they are difficult to encapsulate and are easy to fracture even under very small stretch. Buckled, encapsulated interconnects have successfully linked the isolated islands to complete the circuits [10,51–53] but the fabrication requires transfer printing circuits on pre-stretched elastomer and the buckled interconnect bridges make it difficult to integrate the device with other surfaces. In-plane, serpentine-shaped interconnects can get rid of both troubles – they can be transfer printed onto relaxed elastomers and as fabricated sensors have a flat surface which is easy to encapsulate or to integrate. Serpentine circuits are stretchable because they are like in-plane springs, which can achieve large end-to-end displacement through geometric reconfiguration instead of straining the inter-atomic distance of the material [54,55]. What’s more convenient is that the geometric reconfiguration can be highly reversible due to the small induced strains.

The “island plus serpentine” strategy and its more stretchable variation, the “filamentary serpentine” network, have enabled an explosion of stretchable electronics [56,57] in the late 2000s when the concept of bio-integrated electronics was proposed. So far, bio-integrated electronics has demonstrated exciting applications including epidermal electronic systems (EES) for vital sign monitoring and human machine interface [58–64] (Fig. 1A), conformal epicardial mapping/treatment sheet [65] (Fig. 1B) or sock [66], and instrumented balloon catheter for minimally invasive surgery [67] (Fig. 1C). More detailed materials and mechanics strategies for bio-integrated electronics have been summarized in several recent review articles [68–73]. In addition to bio-integrated electronics, stretchable sensors based on freestanding “island-plus-serpentine” network (i.e., not bonded to polymer substrates) have also found use in structure health monitors (SHM) for their extreme extensibility so that microfabricated, wafer sized sensor network can be deployed hundreds of times to cove huge civil or aerospace structures [74,75] (Fig. 1D). As bending eventually induces tensile strains on the surface of the structure, the “island-plus-serpentine” structure has also enhanced the bending and folding capability of silicon electronics integrated on stiff substrates (e.g., Kapton, printing papers, fabrics, etc.) through a soft strain isolation interlayer [76,77].

This review will summarize some recent studies of the fundamental mechanics of polymer-supported stiff islands and serpentine either freestanding or bonded to polymer substrates. The tradeoff between mechanics and functionality will also be discussed and some optimization strategies will be offered. This review is organized as follows: Section 2 will focus on the mechanics of polymer-supported stiff islands. Section 3 will investigate freestanding and polymer-supported serpentine, respectively. Concluding remarks will be given in Section 4.

2. Stretchable islands on polymer substrates

Mechanics of stiff islands on polymer substrate is important to not only the mechanical reliability of the stretchable device, but also the functionality of the electronics and sensors. In terms of mechanical reliability, failure modes such as channel cracking in ceramic islands [78] and island/substrate delamination [79] are commonly seen. In terms of functionality, semiconductor mobility [80,81] and strain gauge factor [58,64,65,82,83] can be greatly affected by the strain transferred from substrates to islands. In this section, we will use stretchable strain gauges made of piezoresistive silicon strips bonded on polymer substrates (Fig. 1B) as an example to illustrate the tradeoff between mechanics and functionality.

Strain gauges are widely applied to measure mechanical deformation of structures and specimens. Stretchable strain gauges offer unique capability of measuring large strains in soft materials and bio-tissues. While metallic foil gauges usually have a gauge factor slightly over 2 [84], single crystalline silicon demonstrates intrinsic gauge factors as high as 200 due to their piezoresistive property [85–87]. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates [64,65,83]. Compared with polymer based stretchable strain gauges [88,89], silicon based ones exhibit less drift, better reversibility, and faster time response. But depending on the substrate material, the behaviors of silicon strain gauges are very different: their gauge factors spanned from 0.23 [64,65] to 43 [83] and stretchability from less than 1% [83] to more than 25% [64,65].

To achieve a fundamental understanding of the large variation in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, 2D plane strain finite element models (FEM) and semi-analytical models are established to reveal the effects of the length of the silicon strip, and the thickness and
modulus of the polymer substrate (Fig. 2) [82]. A 3D silicon island on polymer substrate problem shown in Fig. 2A is simplified into a 2D plane strain problem as depicted in Fig. 2B. We use \(L \) to represent the length of the silicon strip, \(h \) and \(H \) the thicknesses of silicon and polymer, respectively. To minimize the number of variables, the size of the unit cell is fixed to be 1.5 \(L \) for all the models following a convention of island-on-polymer analysis [77,90,91]. While the average strain \(\varepsilon_{\text{avg}} \) in silicon reflects the gauge factor (GF), the maximum strain in silicon \(\varepsilon_{\text{max}} \) governs the stretchability of the system. Through dimensional analysis, we have determined three dimensionless variables:

\[
\frac{\varepsilon_{\text{avg}}}{\varepsilon_{\text{app}}} = f \left(\frac{E_{\text{Si}}}{E_{\text{pol}}}, \frac{L}{L_0}, \frac{h}{H} \right),
\]

and

\[
\frac{\varepsilon_{\text{max}}}{\varepsilon_{\text{app}}} = f \left(\frac{E_{\text{Si}}}{E_{\text{pol}}}, \frac{L}{L_0}, \frac{h}{H} \right).
\]
where the substrate “Si” denotes silicon and “s” represents substrate. Our goal is to find out the functional forms of f and g. Several shear lag models have been built to solve similar problems of stiff thin films on compliant substrates [65, 92, 93], but all of them had to make special assumptions of the shear stress distribution along the film/substrate interface, none of which is generic enough to be applicable to wide ranges of E_s/E_{Si}, L/h, and H/h. As a result, we will first use FEM to find exact solutions for e_{avg}/e_{app} and e_{max}/e_{app} over wide ranges of all three variables, and then use analytical methods to derive the f and g functions for extreme cases (e.g. $L/H < 1$ and $L/H > 1$). When $L/H < 1$, $h/H < 1$ is also true since experimentally $L > h$ is always valid. In this case, the substrate can be considered infinitely thick and H is no longer a relevant variable in this problem. Therefore e_{avg} and e_{max} only depend on E_s/E_{Si} and L/h. Through free body diagram and equilibrium analysis of the silicon strip [82], we find out that

$$\frac{e_{max}}{e_{app}} = g \left(\frac{E_s}{E_{Si}}, \frac{L}{h}, \frac{h}{H} \right)$$

where g is a proportional coefficient to be determined through fitting FEM results of small L’s and is a generic coefficient which once fitted, should be applicable to all combinations of E_s, L, and E_{Si} provided $L/H < 1$. g is found to be 0.219 for e_{avg}/e_{app} and 0.279 for e_{max}/e_{app}. We then plot Eq. (5) against FEM results of all the other combinations of E_s and H and it turns out that Eq. (5) is able to capture very wide ranges of E_s when $L/H < 1$, for both e_{avg}/e_{app} (Fig. 2C) and e_{max}/e_{app} (not shown). In summary, when $L/H < 1$, the average and maximum strains in silicon scale linearly with E_s and L, i.e., the stiffer substrate and the longer island (compared to the thickness of the island) yield higher strains in the island. Since E_s can be easily changed by orders of magnitude, e.g., from 2.5 GPa for Kapton and polyethylene terephthalate (PET) to 60 kPa for Ecoflex [58], strains in silicon can be tuned across orders of magnitude too.

When $L/H > 1$, assuming $L/h > 1$ is always valid, relevant variables reduce to E_s/E_{Si} and h/H. Through decomposed tension and bending boundary conditions [82], we have derived

$$\frac{e}{e_{app}} = \frac{1}{1 + \frac{a}{E_{Si}} + \frac{b}{E_s}}$$

where a and b are fitting parameters. Fitting FEM results yields $a = 5.46 \times 10^{-5}$ and $b = 0.428$, which makes Eq. (6) a universal
expression to capture both $\varepsilon_{avg}/\varepsilon_{app}$ and $\varepsilon_{max}/\varepsilon_{app}$ (Fig. 2D), over wide ranges of E_S/E_H and h/H, provided $L \gg H$. Some important conclusions can be drawn from Fig. 2D: first, when the substrate stiffness is close to silicon, both $\varepsilon_{avg}/\varepsilon_{app}$ and $\varepsilon_{max}/\varepsilon_{app}$ approach 1; when the substrate becomes extremely soft or extremely thin, $\varepsilon_{avg}/\varepsilon_{app}$ can be reduced by orders of magnitude, and will eventually die out. With the two semi-analytical solutions given by Eqs. (5) and (6), it is useful to plot them as functions of L/H and compare them with FEM results as shown in Fig. 2E. It is clear that Eqs. (5) and (6) can successfully predict the FEM results, except the transition zone, i.e., mediocre L, which is consistent with the assumptions made to derive those two equations.

To discuss the tradeoff between GF and stretchability, we can relate GF to $\varepsilon_{avg}/\varepsilon_{app}$ as [82].

$$GF = G_F \frac{\varepsilon_{avg}}{\varepsilon_{app}},$$

and relate stretchability (i.e., critical applied strain-to-rupture), ε_{crit}, to $\varepsilon_{max}/\varepsilon_{app}$ as [82]

$$\varepsilon_{crit} = \frac{\varepsilon_{max}}{\varepsilon_{app}}.$$

For the purpose of illustration, we have to assume some reasonable numbers for the intrinsic properties for silicon, including $G_{SF} = 100$ [83] and critical strain-to-rupture $\varepsilon_{crit} = 1\%$. Fig. 2F plots the GF and ε_{crit} as functions of E_S with everything else fixed. The tradeoff between the two is very clear: when the substrate is soft, the stretchability can be high but the GF is low and when the substrate is stiff, the stretchability is small but the GF can be enhanced. Choosing the right E_S, L, and H for stretchable strain gauges depends on the well anticipated performance metrics such as the system stiffness, stretchability, GF, as well as the fabrication preference such as the patterning resolution, and the thickness of silicon.

Although the stretchability and GF always go opposite directions, a concept of strain isolation has been introduced to break the limitation of low stretchability on stiff substrates [76,77]. Here we consider the stiff substrates to be materials like Kapton or PET, which have high modulus but are still stretchable up to tens of percent as long as large enough forces are applied. When a very soft layer is placed in between the stiff islands and the stiff substrate, the tensile strain in the stiff substrate cannot be fully transferred to the stiff islands attributing to the enormous shear inside the soft interlayer. The effect of strain transfer reduction depends on the thickness and compliance of the interlayer, which has been successfully formulated [77].

The generic mechanics formulation given in this section is applicable to predict strains in any polymer-bonded stiff islands as long as linear elasticity and small deformation can be assumed. Delamination analysis are also available for single [94,95] or periodic [90,96] islands bonded to polymer substrates, which are not very recent results and hence will not be discussed in details here. More studies are needed to reveal the strain and delamination in polymer-bonded stiff islands when subjected to large deformation.

3. Stretchable serpentines

While patterning stiff membranes into isolated islands on soft substrates is an effective way for strain management, the functional components are discrete and hence lack of communication. The best way to build continuous, stretchable structure out of stiff materials is the serpentine design, i.e., patterning the blanket membranes into continuous but meandering ribbons [46,54]. When the polymer substrate is stretched, serpentine wires/ribbons can rotate in plane as well as buckle out of plane to accommodate the applied deformation, resulting in greatly reduced strains as well as much lower effective stiffness. In addition to serpentine-shaped, metal-based interconnects [46,54,67,97–100], electro-physiological or thermal sensing electrodes [58–61], or micro-heaters [101,102], silicon-based solar cells and amplifiers [58], zinc oxide-based nanogenerators [103], and graphene-based interconnects [104] can all be patterned into serpentine shapes using conventional photolithography and etching methods [46,58,104]. In addition to polymer-bonded serpentines, freestanding stretchable serpentine network can find applications in deployable sensor networks [75,105] and coronary stents [106]. In these two cases, the serpentine thickness is much larger than the width, and the large expandability mostly comes from the in-plane rigid body rotation of the serpentine arms. Serpentine structure now becomes the most effective mechanism to enhance the stretchability of any type of intrinsically stiff materials. In fact, serpentine structures offer more than just stretchability and compliance. Unlike flexible or bendable sheets only able to conform to cylindrical surfaces, a stretchable structure can also intimately and nonviscously conform to 3D curvilinear surfaces such as a human fist [75] or the fine wrinkles on the surface of a skin replica [61]. Although serpentines have been widely used as the stretchable configuration of stiff materials, the designs of the serpentine shape are still largely empirical. According to existing studies, the applied strain-to-rupture of metallic serpentine ribbons varies from 5% to 1600%, depending on the geometric parameters such as ribbon width, arc radius, and arm length substrate support [46,54,75,97,98,100]. The effects of serpentine shape and substrate constraint on serpentine stretchability and compliance have been studied by theoretical, numerical, and experimental means, as discussed in the follows.

3.1. Freestanding serpentines

Our discussion will begin with a fundamental mechanics study of freestanding, thick serpentine ribbons whose strain and compliance can be analytically obtained through curved beam (CB) theory, as shown in Fig. 3 [107]. Fig. 3A depicts a unit cell cut out of a one-directional periodic serpentine ribbon whose geometry can be completely defined by four parameters: the ribbon width w, the arc radius R, the arc angle α, and the arm length l. The end-to-end distance of a unit cell is denoted by S. When this unit cell is subjected to a tensile displacement u_0 at each end, the effective applied strain ε_{app} is defined as

$$\varepsilon_{app} = \frac{2u_0}{l}.$$

Therefore a straight ribbon (i.e. $\alpha = -90^\circ$) of length S should have a uniform strain of ε_{app} if the end effects are neglected. Taking advantage of symmetry, a unit cell can ultimately be represented by a quarter cell with fixed boundary at the axis of symmetry and a displacement of $u_0/2$ at the end, as shown in Fig. 3B. The reaction force is named P in Fig. 3B. Assuming linear elastic material and small deformation, through CB theory, the normalized stiffness and maximum strain in the serpentine can be obtained analytically as [107]:

$$P = \frac{\pi}{12} \left[(\cos x - \sin x) \left(\frac{L}{2} + \frac{3}{2} x + \frac{3}{2} \frac{L}{2} \cos x \right) + \frac{1}{3} \sin 2x \left(6 (\frac{L}{2} + x) + 9 \right) + \frac{1}{3} \left(\frac{L}{2} + x \right) (\cos x + \sin x) \right] + \frac{1}{3} \left(\frac{L}{2} + x \right) \left(\frac{L}{2} \cos x \right),$$

where $P = 2Ew/\varepsilon_{app}$ represents the reaction force needed for the linear counterpart of the serpentine to elongate by $2u_0$, and
\[
\varepsilon_{\text{max}} = \frac{\pi}{\varepsilon_{\text{app}}} \left[\frac{1}{2R} \left(\frac{1}{2R} - \frac{R}{2} \right) (\sin x + \frac{1}{2} \cos x) \right] (\cos x - \frac{1}{2} \sin x) \\
+ \sin 2x \left(\frac{2}{2R} + 3(\frac{x}{2}) \frac{1}{R} + 12 \frac{x}{2} - 12 (\frac{x}{2} + 1) \right) \\
+ \frac{3}{2} \left(\frac{x}{2} + 1 \right) \left(\frac{1}{2} \cos x + \sin x \right) + \frac{1}{4} \left(\sin x + \frac{1}{2} \cos x \right) \right] \quad (\text{11})
\]

Such closed form analytical results have found excellent agreement with FEM and experimental results as shown in Fig. 3C–F. It is evident in Fig. 3C that freestanding serpintines with smaller width and longer arms (compared to the arc radius) are more compliant. More impressively, Fig. 3C indicates that the effective stiffness can be reduced by orders of magnitude by simply changing a straight ribbon into serpentine shapes – this is why metal or silicon based serpintines can be made as soft as skins [58] and tissues [65]. The strain distribution in a representative serpentine unit cell obtained by FEM is given by Fig. 3D. It is obvious that the maximum strain in a freestanding, plane strain serpentine always occurs at the inner crest of the arc, which is exactly where 3D printed serpentine ribbons break when experimentally pulled. Fig. 3E suggests that the FEM results of the maximum strain match perfectly with the elasticity theory but not with the CB theory when the ratio \(w/R\) is bigger than 1/2. Fortunately, all of the commonly used serpentine shapes in stretchable sensors are well within \(w/R < 1/2\), so that the CB theory can accurately capture the maximum strain in these serpintines. Although narrower and longer-armed serpintines also exhibit smaller strains, the strain reduction by serpentine is not as significant as the stiffness reduction when Fig. 3C and E are compared. The effect of the arc angle \(\alpha\) is illustrated by Fig. 3F. The experimental results are obtained by recording the applied strain-to-rupture of 3D printed thick serpentine ribbons under uniaxial tension. Two observations can be readily made: first, while the effects of \(w/R\) and \(l/R\) are monotonic, the effect of \(\alpha\) is not always monotonic; second, when \(\alpha\) is close to \(-90^\circ\), i.e., when the serpentine approaches a linear ribbon, the maximum strain in the serpentine may exceed the applied strain, meaning the serpentine is less stretchable compared to their
straight counterpart. As a result, it is important for us to realize that not all serpentines can help reduce strains and the design of the serpentine needs to be rationalized.

Fig. 4 gives two distinctive serpentine designs [107]. Limited by the fabrication resolution and conductance requirement, serpentines cannot be made infinitely narrow. Therefore if there is no other limitations, the most effective way to build utmost stretchable serpentine is to use extremely long arms, as shown in Fig. 4A. The maximum strain as a function of the arm length is given by Fig. 4B, which shows that it is possible to achieve orders of magnitude enhancement in stretchability if the arm length can be made ten- or hundred-fold of the arc radius. This finding explains why the serpentine in the spider-web-like SHM sensor network can be stretched up to 1600% without losing electrical conductivity, as shown in Fig. 1D [75]. In many other circuit layout, however, there will be real estate limitations. In these cases, Fig. 4C and D offers an optimization strategy. To solve for the three unknowns, \(x, w/R, \) and \(l/R \), three equations can be established to formulate the optimization problem: (i) the distance between the two nearest ribbons, \(X \geq 0 \); (ii) the breadth of the serpentine is limited, e.g., \(Y/w = 10 \); (iii) minimization of \(\varepsilon_{\text{max}}/\varepsilon_{\text{app}} \), i.e. minimizing the values given by Eq. (11). Solving the three equations simultaneously yields the optimized shape given by Fig. 4D. Shape optimization under other constraints can be formulated following similar procedures.

When serpentine ribbons are very thin compared to their width, as in most bio-integrated sensors, freestanding serpentines will buckle out of plane to avoid high-strain-energy in-plane bending and twisting. Buckling and postbuckling theories and FEM have been developed to address this problem [55,108,109]. To enhance the areal coverage of functional serpentines without compromising the multidirectional stretchability, a concept of self-similar or fractal serpentines have been proposed, which has also greatly enhanced the topologies of serpentine designs [100,110–112]. So far, the optimization theories for freestanding, interlaced serpentine networks are still lacking.

3.2. Polymer-bonded serpentines

The mechanical behaviors of polymer-bonded serpentines are expected to be very different from the freestanding ones. The mechanics study of polymer-bonded or polymer-embedded serpentines dated back to 2004 [54]. Since then, a few experiments and FEM have been conducted to provide insights into the shape-dependent mechanical behaviors of polymer-supported metal-based serpentines [46,75,97–99,113–115]. Other than metallic serpentines, ceramic serpentines start to gain popularity as stretchable solar cells [58], amplifiers [58], and nanogenerators [103]. But so far there is little experimental mechanics investigation to reveal the stretchability of polymer-bonded brittle serpentine thin films due to the difficulty to fabricate and handle brittle serpentine thin films on soft polymer substrates. We have used indium tin oxide (ITO) as a model brittle material to study the mechanics of polymer-bonded brittle serpentines [116].

Thin ITO films have been a popular electrode material in flat panel displays [117] and solar cells [118] attributing to their combined high electrical conductivity and optical transparency. However, ITO is not mechanically favorable in flexible/stretchable electronics due to its brittle nature. Cracks were observed at applied tensile strains around 1% in polymer-supported blanket thin ITO films [106,119]. Resistance vs. applied strain curves have been widely adopted to indicate the stretchability of conductive thin films such as metal [48,49,120] and ITO [106]. Our experimental procedures are summarized in Fig. 5A–D [116]. After taking the ITO coated PI substrate (Kapton) out of the sputter chamber, the

Fig. 4. Optimization of freestanding, thick serpentines [107]: (A) A representative freestanding long-armed serpentine. (B) The strain in such serpentines can be dropped by orders of magnitude. (C) Geometric drawing to illustrate the gap between the nearest ribbon, \(X \), and the breadth of the serpentine, \(Y \). (D) Analytically optimized serpentine shape under \(X \) and \(Y \) constraints and strain minimization.
straight specimens are cut into long rectangular strips and the serpentine specimens are cut into rectangular pieces each including a group of four or five serpentine ribbons with systematically varied shapes, as shown in Fig. 5A. A schematic of the tension test with in situ electrical resistance measurement is shown in Fig. 5B. According to a sequence of scanning electron microscope (SEM) images (Fig. 5C), the correlation between crack density and electrical resistance can be found in Fig. 5D. Despite of the small lag, the resistance is able to capture the failure of the ITO serpentine in a much more experimentally economic way compared to the crack density method.

Using FEM to model a unit cell of the Kapton-supported ITO serpentine subjected to a uniaxial tensile strain, \(e_{\text{app}}\), reveals that the strain concentration always occurs at the inner crest of the arc, which is consistent with our experimental observation of preferred crack initiation sites. Similar conclusion has also been drawn for freestanding serpentines as discussed in Section 3.1 [107]. A series of FEMs are performed for systematically varied serpentine shapes. An empirical equation is fitted based on the FEM results as discussed in [116]. The comparison between experiments, FEM, and the empirical equation is given by Fig. 5E. All of the FEM results are able to fall on the linear curve represented by the empirical equation. The experimental data also demonstrates reasonable agreement with limited scatter. This plot is a direct validation of our empirical relation between strain and geometry. Due to the constraint from the stiff Kapton substrate, the arm rotation is completely suppressed and hence the geometric effect on serpentine stretchability is minimum compared with freestanding ones. Fig. 5F plots \(e_{\text{max}}/e_{\text{app}}\) as a function of \(w/r\) with different \(l/r\). It is evident that \(w/r\) always has a monotonic effect on \(e_{\text{max}}/e_{\text{app}}\) – smaller strains in narrow ribbons. Another important finding is that when \(w/r\) is beyond about 0.4, \(e_{\text{max}}/e_{\text{app}}\) will be beyond 1, which means the stretchability of the serpentine will actually be lower than their straight counterpart, indicating a strain augmentation instead of strain reduction effect. Compared with the effect of \(w/r\), the effects of arm length \(l/r\) and \(\alpha\) (not shown) are not as significant, especially when \(w/r\) is small. Some non-monotonic effect of \(\alpha\) have been uncovered by FEM, which has also been successfully captured by our empirical equation (not shown). The key message from this study is that stiff serpentines directly bonded to stiff substrates like Kapton or PET are in general not more stretchable than their linear counterpart and many cases could be even worse. Serpentines will be stretchable when integrated on a very soft substrate or when they are allowed to detach from a stiff substrate.

4. Conclusion

This review article tries to address the mechanics of the most popular structural design of stretchable sensors: the island plus
serpentine design. We have discussed the mechanics of polymer-supported islands, freestanding serpentine, and polymer-supported brittle serpentine, respectively. The small strain analysis provided in this paper is generic to all types of stiff thin films including ceramic, metallic, and even two-dimensional nanomembranes as long as continuum mechanics applies. In general, we find softer substrates and smaller features can yield lower strains and hence larger stretchability. We have also touched the tradeoff between mechanics and functionality and we recognize that the simultaneous optimization of structure and performance still remains a grand challenge in this field, which can only be addressed through multidisciplinary research.

Acknowledgements

N.L. acknowledges the support from US NSF CMMI #1351875, the US NSF NASCENT Center (EEC #1160494), and the 3M Non-Tenured Faculty Award.

References

